Metamath Proof Explorer


Theorem ennum

Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion ennum ABAdomcardBdomcard

Proof

Step Hyp Ref Expression
1 enen2 ABxAxB
2 1 rexbidv ABxOnxAxOnxB
3 isnum2 AdomcardxOnxA
4 isnum2 BdomcardxOnxB
5 2 3 4 3bitr4g ABAdomcardBdomcard