Metamath Proof Explorer


Theorem isnum2

Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion isnum2 AdomcardxOnxA

Proof

Step Hyp Ref Expression
1 cardf2 card:y|xOnxyOn
2 1 fdmi domcard=y|xOnxy
3 2 eleq2i AdomcardAy|xOnxy
4 relen Rel
5 4 brrelex2i xAAV
6 5 rexlimivw xOnxAAV
7 breq2 y=AxyxA
8 7 rexbidv y=AxOnxyxOnxA
9 6 8 elab3 Ay|xOnxyxOnxA
10 3 9 bitri AdomcardxOnxA