Metamath Proof Explorer


Theorem enrer

Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)

Ref Expression
Assertion enrer ~𝑹Er𝑷×𝑷

Proof

Step Hyp Ref Expression
1 df-enr ~𝑹=xy|x𝑷×𝑷y𝑷×𝑷zwvux=zwy=vuz+𝑷u=w+𝑷v
2 addcompr x+𝑷y=y+𝑷x
3 addclpr x𝑷y𝑷x+𝑷y𝑷
4 addasspr x+𝑷y+𝑷z=x+𝑷y+𝑷z
5 addcanpr x𝑷y𝑷x+𝑷y=x+𝑷zy=z
6 1 2 3 4 5 ecopover ~𝑹Er𝑷×𝑷