Metamath Proof Explorer


Theorem eqabbw

Description: Version of eqabb using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024)

Ref Expression
Hypothesis eqabbw.1 x=yφψ
Assertion eqabbw A=x|φyyAψ

Proof

Step Hyp Ref Expression
1 eqabbw.1 x=yφψ
2 dfcleq A=x|φyyAyx|φ
3 df-clab yx|φyxφ
4 1 sbievw yxφψ
5 3 4 bitri yx|φψ
6 5 bibi2i yAyx|φyAψ
7 6 albii yyAyx|φyyAψ
8 2 7 bitri A=x|φyyAψ