Metamath Proof Explorer


Theorem eqbrriv

Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006)

Ref Expression
Hypotheses eqbrriv.1 RelA
eqbrriv.2 RelB
eqbrriv.3 xAyxBy
Assertion eqbrriv A=B

Proof

Step Hyp Ref Expression
1 eqbrriv.1 RelA
2 eqbrriv.2 RelB
3 eqbrriv.3 xAyxBy
4 df-br xAyxyA
5 df-br xByxyB
6 3 4 5 3bitr3i xyAxyB
7 1 2 6 eqrelriiv A=B