Metamath Proof Explorer


Theorem eqbrtrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999)

Ref Expression
Hypotheses eqbrtrd.1 φA=B
eqbrtrd.2 φBRC
Assertion eqbrtrd φARC

Proof

Step Hyp Ref Expression
1 eqbrtrd.1 φA=B
2 eqbrtrd.2 φBRC
3 1 breq1d φARCBRC
4 2 3 mpbird φARC