Metamath Proof Explorer


Theorem eqfnfv2d2

Description: Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses eqfnfv2d2.1 φFFnA
eqfnfv2d2.2 φGFnB
eqfnfv2d2.3 φA=B
eqfnfv2d2.4 φxAFx=Gx
Assertion eqfnfv2d2 φF=G

Proof

Step Hyp Ref Expression
1 eqfnfv2d2.1 φFFnA
2 eqfnfv2d2.2 φGFnB
3 eqfnfv2d2.3 φA=B
4 eqfnfv2d2.4 φxAFx=Gx
5 4 ralrimiva φxAFx=Gx
6 3 5 jca φA=BxAFx=Gx
7 1 2 jca φFFnAGFnB
8 eqfnfv2 FFnAGFnBF=GA=BxAFx=Gx
9 7 8 syl φF=GA=BxAFx=Gx
10 6 9 mpbird φF=G