Metamath Proof Explorer


Theorem fzsplitnd

Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypothesis fzsplitnd.1 φ K M N
Assertion fzsplitnd φ M N = M K 1 K N

Proof

Step Hyp Ref Expression
1 fzsplitnd.1 φ K M N
2 elfzuz K M N K M
3 1 2 syl φ K M
4 1 elfzelzd φ K
5 4 zcnd φ K
6 1cnd φ 1
7 5 6 npcand φ K - 1 + 1 = K
8 7 eleq1d φ K - 1 + 1 M K M
9 3 8 mpbird φ K - 1 + 1 M
10 1zzd φ 1
11 4 10 zsubcld φ K 1
12 elfzuz3 K M N N K
13 1 12 syl φ N K
14 7 fveq2d φ K - 1 + 1 = K
15 14 eleq2d φ N K - 1 + 1 N K
16 13 15 mpbird φ N K - 1 + 1
17 peano2uzr K 1 N K - 1 + 1 N K 1
18 11 16 17 syl2anc φ N K 1
19 fzsplit2 K - 1 + 1 M N K 1 M N = M K 1 K - 1 + 1 N
20 9 18 19 syl2anc φ M N = M K 1 K - 1 + 1 N
21 7 oveq1d φ K - 1 + 1 N = K N
22 21 uneq2d φ M K 1 K - 1 + 1 N = M K 1 K N
23 20 22 eqtrd φ M N = M K 1 K N