Metamath Proof Explorer


Theorem fzsplitnr

Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses fzsplitnr.1 φM
fzsplitnr.2 φN
fzsplitnr.3 φK
fzsplitnr.4 φMK
fzsplitnr.5 φKN
Assertion fzsplitnr φMN=MK1KN

Proof

Step Hyp Ref Expression
1 fzsplitnr.1 φM
2 fzsplitnr.2 φN
3 fzsplitnr.3 φK
4 fzsplitnr.4 φMK
5 fzsplitnr.5 φKN
6 1 2 3 4 5 elfzd φKMN
7 6 fzsplitnd φMN=MK1KN