Metamath Proof Explorer
Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
fzsplitnr.1 |
|
|
|
fzsplitnr.2 |
|
|
|
fzsplitnr.3 |
|
|
|
fzsplitnr.4 |
|
|
|
fzsplitnr.5 |
|
|
Assertion |
fzsplitnr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzsplitnr.1 |
|
| 2 |
|
fzsplitnr.2 |
|
| 3 |
|
fzsplitnr.3 |
|
| 4 |
|
fzsplitnr.4 |
|
| 5 |
|
fzsplitnr.5 |
|
| 6 |
1 2 3 4 5
|
elfzd |
|
| 7 |
6
|
fzsplitnd |
|