Metamath Proof Explorer


Theorem fzsplitnr

Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses fzsplitnr.1
|- ( ph -> M e. ZZ )
fzsplitnr.2
|- ( ph -> N e. ZZ )
fzsplitnr.3
|- ( ph -> K e. ZZ )
fzsplitnr.4
|- ( ph -> M <_ K )
fzsplitnr.5
|- ( ph -> K <_ N )
Assertion fzsplitnr
|- ( ph -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) )

Proof

Step Hyp Ref Expression
1 fzsplitnr.1
 |-  ( ph -> M e. ZZ )
2 fzsplitnr.2
 |-  ( ph -> N e. ZZ )
3 fzsplitnr.3
 |-  ( ph -> K e. ZZ )
4 fzsplitnr.4
 |-  ( ph -> M <_ K )
5 fzsplitnr.5
 |-  ( ph -> K <_ N )
6 1 2 3 4 5 elfzd
 |-  ( ph -> K e. ( M ... N ) )
7 6 fzsplitnd
 |-  ( ph -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) )