Metamath Proof Explorer


Theorem fzsplitnr

Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses fzsplitnr.1 ( 𝜑𝑀 ∈ ℤ )
fzsplitnr.2 ( 𝜑𝑁 ∈ ℤ )
fzsplitnr.3 ( 𝜑𝐾 ∈ ℤ )
fzsplitnr.4 ( 𝜑𝑀𝐾 )
fzsplitnr.5 ( 𝜑𝐾𝑁 )
Assertion fzsplitnr ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝐾 − 1 ) ) ∪ ( 𝐾 ... 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 fzsplitnr.1 ( 𝜑𝑀 ∈ ℤ )
2 fzsplitnr.2 ( 𝜑𝑁 ∈ ℤ )
3 fzsplitnr.3 ( 𝜑𝐾 ∈ ℤ )
4 fzsplitnr.4 ( 𝜑𝑀𝐾 )
5 fzsplitnr.5 ( 𝜑𝐾𝑁 )
6 1 2 3 4 5 elfzd ( 𝜑𝐾 ∈ ( 𝑀 ... 𝑁 ) )
7 6 fzsplitnd ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝐾 − 1 ) ) ∪ ( 𝐾 ... 𝑁 ) ) )