Metamath Proof Explorer
Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
fzsplitnr.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
fzsplitnr.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
|
fzsplitnr.3 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
|
|
fzsplitnr.4 |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
|
|
fzsplitnr.5 |
⊢ ( 𝜑 → 𝐾 ≤ 𝑁 ) |
|
Assertion |
fzsplitnr |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝐾 − 1 ) ) ∪ ( 𝐾 ... 𝑁 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzsplitnr.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
fzsplitnr.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
|
fzsplitnr.3 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 4 |
|
fzsplitnr.4 |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
| 5 |
|
fzsplitnr.5 |
⊢ ( 𝜑 → 𝐾 ≤ 𝑁 ) |
| 6 |
1 2 3 4 5
|
elfzd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
| 7 |
6
|
fzsplitnd |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝐾 − 1 ) ) ∪ ( 𝐾 ... 𝑁 ) ) ) |