| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzsplitnd.1 |
|- ( ph -> K e. ( M ... N ) ) |
| 2 |
|
elfzuz |
|- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
| 3 |
1 2
|
syl |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
| 4 |
1
|
elfzelzd |
|- ( ph -> K e. ZZ ) |
| 5 |
4
|
zcnd |
|- ( ph -> K e. CC ) |
| 6 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 7 |
5 6
|
npcand |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
| 8 |
7
|
eleq1d |
|- ( ph -> ( ( ( K - 1 ) + 1 ) e. ( ZZ>= ` M ) <-> K e. ( ZZ>= ` M ) ) ) |
| 9 |
3 8
|
mpbird |
|- ( ph -> ( ( K - 1 ) + 1 ) e. ( ZZ>= ` M ) ) |
| 10 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 11 |
4 10
|
zsubcld |
|- ( ph -> ( K - 1 ) e. ZZ ) |
| 12 |
|
elfzuz3 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
| 13 |
1 12
|
syl |
|- ( ph -> N e. ( ZZ>= ` K ) ) |
| 14 |
7
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) |
| 15 |
14
|
eleq2d |
|- ( ph -> ( N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) <-> N e. ( ZZ>= ` K ) ) ) |
| 16 |
13 15
|
mpbird |
|- ( ph -> N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) |
| 17 |
|
peano2uzr |
|- ( ( ( K - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) -> N e. ( ZZ>= ` ( K - 1 ) ) ) |
| 18 |
11 16 17
|
syl2anc |
|- ( ph -> N e. ( ZZ>= ` ( K - 1 ) ) ) |
| 19 |
|
fzsplit2 |
|- ( ( ( ( K - 1 ) + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` ( K - 1 ) ) ) -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( ( ( K - 1 ) + 1 ) ... N ) ) ) |
| 20 |
9 18 19
|
syl2anc |
|- ( ph -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( ( ( K - 1 ) + 1 ) ... N ) ) ) |
| 21 |
7
|
oveq1d |
|- ( ph -> ( ( ( K - 1 ) + 1 ) ... N ) = ( K ... N ) ) |
| 22 |
21
|
uneq2d |
|- ( ph -> ( ( M ... ( K - 1 ) ) u. ( ( ( K - 1 ) + 1 ) ... N ) ) = ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) ) |
| 23 |
20 22
|
eqtrd |
|- ( ph -> ( M ... N ) = ( ( M ... ( K - 1 ) ) u. ( K ... N ) ) ) |