Metamath Proof Explorer


Theorem eqimssd

Description: Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024)

Ref Expression
Hypothesis eqimssd.1 φA=B
Assertion eqimssd φAB

Proof

Step Hyp Ref Expression
1 eqimssd.1 φA=B
2 ssid BB
3 1 2 eqsstrdi φAB