Metamath Proof Explorer


Theorem eqled

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eqled.1 φA
eqled.2 φA=B
Assertion eqled φAB

Proof

Step Hyp Ref Expression
1 eqled.1 φA
2 eqled.2 φA=B
3 eqle AA=BAB
4 1 2 3 syl2anc φAB