Metamath Proof Explorer


Theorem eqopi

Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008) (Revised by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion eqopi AV×W1stA=B2ndA=CA=BC

Proof

Step Hyp Ref Expression
1 xpss V×WV×V
2 1 sseli AV×WAV×V
3 elxp6 AV×VA=1stA2ndA1stAV2ndAV
4 3 simplbi AV×VA=1stA2ndA
5 opeq12 1stA=B2ndA=C1stA2ndA=BC
6 4 5 sylan9eq AV×V1stA=B2ndA=CA=BC
7 2 6 sylan AV×W1stA=B2ndA=CA=BC