Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Subclasses and subsets eqrd  
				
		 
		
			
		 
		Description:   Deduce equality of classes from equivalence of membership.  (Contributed by Thierry Arnoux , 21-Mar-2017)   (Proof shortened by BJ , 1-Dec-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						eqrd.0   ⊢   Ⅎ  x   φ        
					 
					
						eqrd.1   ⊢    Ⅎ   _  x  A       
					 
					
						eqrd.2   ⊢    Ⅎ   _  x  B       
					 
					
						eqrd.3    ⊢   φ   →    x  ∈  A    ↔   x  ∈  B          
					 
				
					Assertion 
					eqrd    ⊢   φ   →   A  =  B         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							eqrd.0  ⊢   Ⅎ  x   φ        
						
							2 
								
							 
							eqrd.1  ⊢    Ⅎ   _  x  A       
						
							3 
								
							 
							eqrd.2  ⊢    Ⅎ   _  x  B       
						
							4 
								
							 
							eqrd.3   ⊢   φ   →    x  ∈  A    ↔   x  ∈  B          
						
							5 
								1  4 
							 
							alrimi   ⊢   φ   →   ∀  x    x  ∈  A    ↔   x  ∈  B            
						
							6 
								2  3 
							 
							cleqf   ⊢   A  =  B    ↔   ∀  x    x  ∈  A    ↔   x  ∈  B            
						
							7 
								5  6 
							 
							sylibr   ⊢   φ   →   A  =  B