Metamath Proof Explorer


Theorem eqres

Description: Converting a class constant definition by restriction (like df-ers or ~? df-parts ) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018)

Ref Expression
Hypothesis eqres.1 R = S C
Assertion eqres B V A R B A C A S B

Proof

Step Hyp Ref Expression
1 eqres.1 R = S C
2 1 breqi A R B A S C B
3 brres B V A S C B A C A S B
4 2 3 syl5bb B V A R B A C A S B