Metamath Proof Explorer


Theorem eqrrabd

Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024)

Ref Expression
Hypotheses eqrrabd.1 φBA
eqrrabd.2 φxAxBψ
Assertion eqrrabd φB=xA|ψ

Proof

Step Hyp Ref Expression
1 eqrrabd.1 φBA
2 eqrrabd.2 φxAxBψ
3 nfv xφ
4 nfcv _xB
5 nfrab1 _xxA|ψ
6 1 sseld φxBxA
7 6 pm4.71rd φxBxAxB
8 2 pm5.32da φxAxBxAψ
9 7 8 bitrd φxBxAψ
10 rabid xxA|ψxAψ
11 9 10 bitr4di φxBxxA|ψ
12 3 4 5 11 eqrd φB=xA|ψ