Metamath Proof Explorer


Theorem eqsstrrdi

Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses eqsstrrdi.1 φB=A
eqsstrrdi.2 BC
Assertion eqsstrrdi φAC

Proof

Step Hyp Ref Expression
1 eqsstrrdi.1 φB=A
2 eqsstrrdi.2 BC
3 1 eqcomd φA=B
4 3 2 eqsstrdi φAC