Metamath Proof Explorer


Theorem eqvincg

Description: A variable introduction law for class equality, closed form. (Contributed by Thierry Arnoux, 2-Mar-2017)

Ref Expression
Assertion eqvincg AVA=Bxx=Ax=B

Proof

Step Hyp Ref Expression
1 elisset AVxx=A
2 ax-1 x=AA=Bx=A
3 eqtr x=AA=Bx=B
4 3 ex x=AA=Bx=B
5 2 4 jca x=AA=Bx=AA=Bx=B
6 5 eximi xx=AxA=Bx=AA=Bx=B
7 pm3.43 A=Bx=AA=Bx=BA=Bx=Ax=B
8 7 eximi xA=Bx=AA=Bx=BxA=Bx=Ax=B
9 1 6 8 3syl AVxA=Bx=Ax=B
10 19.37v xA=Bx=Ax=BA=Bxx=Ax=B
11 9 10 sylib AVA=Bxx=Ax=B
12 eqtr2 x=Ax=BA=B
13 12 exlimiv xx=Ax=BA=B
14 11 13 impbid1 AVA=Bxx=Ax=B