Metamath Proof Explorer


Theorem eqvrelqseqdisj3

Description: Implication of eqvreldisj3 , lemma for the Member Partition Equivalence Theorem mpet3 . (Contributed by Peter Mazsa, 27-Oct-2020) (Revised by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj3 EqvRelRB/R=ADisjE-1A

Proof

Step Hyp Ref Expression
1 eqvreldisj3 EqvRelRDisjE-1B/R
2 1 adantr EqvRelRB/R=ADisjE-1B/R
3 reseq2 B/R=AE-1B/R=E-1A
4 3 disjeqd B/R=ADisjE-1B/RDisjE-1A
5 4 adantl EqvRelRB/R=ADisjE-1B/RDisjE-1A
6 2 5 mpbid EqvRelRB/R=ADisjE-1A