Metamath Proof Explorer


Theorem erbr3b

Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020)

Ref Expression
Assertion erbr3b RErXARBARCBRC

Proof

Step Hyp Ref Expression
1 simpll RErXARBARCRErX
2 simplr RErXARBARCARB
3 simpr RErXARBARCARC
4 1 2 3 ertr3d RErXARBARCBRC
5 simpll RErXARBBRCRErX
6 simplr RErXARBBRCARB
7 simpr RErXARBBRCBRC
8 5 6 7 ertrd RErXARBBRCARC
9 4 8 impbida RErXARBARCBRC