| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> R Er X ) |
| 2 |
|
simplr |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> A R B ) |
| 3 |
|
simpr |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> A R C ) |
| 4 |
1 2 3
|
ertr3d |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> B R C ) |
| 5 |
|
simpll |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> R Er X ) |
| 6 |
|
simplr |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> A R B ) |
| 7 |
|
simpr |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> B R C ) |
| 8 |
5 6 7
|
ertrd |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> A R C ) |
| 9 |
4 8
|
impbida |
|- ( ( R Er X /\ A R B ) -> ( A R C <-> B R C ) ) |