Metamath Proof Explorer


Theorem erbr3b

Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020)

Ref Expression
Assertion erbr3b
|- ( ( R Er X /\ A R B ) -> ( A R C <-> B R C ) )

Proof

Step Hyp Ref Expression
1 simpll
 |-  ( ( ( R Er X /\ A R B ) /\ A R C ) -> R Er X )
2 simplr
 |-  ( ( ( R Er X /\ A R B ) /\ A R C ) -> A R B )
3 simpr
 |-  ( ( ( R Er X /\ A R B ) /\ A R C ) -> A R C )
4 1 2 3 ertr3d
 |-  ( ( ( R Er X /\ A R B ) /\ A R C ) -> B R C )
5 simpll
 |-  ( ( ( R Er X /\ A R B ) /\ B R C ) -> R Er X )
6 simplr
 |-  ( ( ( R Er X /\ A R B ) /\ B R C ) -> A R B )
7 simpr
 |-  ( ( ( R Er X /\ A R B ) /\ B R C ) -> B R C )
8 5 6 7 ertrd
 |-  ( ( ( R Er X /\ A R B ) /\ B R C ) -> A R C )
9 4 8 impbida
 |-  ( ( R Er X /\ A R B ) -> ( A R C <-> B R C ) )