Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> R Er X ) |
2 |
|
simplr |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> A R B ) |
3 |
|
simpr |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> A R C ) |
4 |
1 2 3
|
ertr3d |
|- ( ( ( R Er X /\ A R B ) /\ A R C ) -> B R C ) |
5 |
|
simpll |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> R Er X ) |
6 |
|
simplr |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> A R B ) |
7 |
|
simpr |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> B R C ) |
8 |
5 6 7
|
ertrd |
|- ( ( ( R Er X /\ A R B ) /\ B R C ) -> A R C ) |
9 |
4 8
|
impbida |
|- ( ( R Er X /\ A R B ) -> ( A R C <-> B R C ) ) |