Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Relations and Functions
Relations - misc additions
erbr3b
Next ⟩
iunsnima
Metamath Proof Explorer
Ascii
Unicode
Theorem
erbr3b
Description:
Biconditional for equivalent elements.
(Contributed by
Thierry Arnoux
, 6-Jan-2020)
Ref
Expression
Assertion
erbr3b
⊢
R
Er
X
∧
A
R
B
→
A
R
C
↔
B
R
C
Proof
Step
Hyp
Ref
Expression
1
simpll
⊢
R
Er
X
∧
A
R
B
∧
A
R
C
→
R
Er
X
2
simplr
⊢
R
Er
X
∧
A
R
B
∧
A
R
C
→
A
R
B
3
simpr
⊢
R
Er
X
∧
A
R
B
∧
A
R
C
→
A
R
C
4
1
2
3
ertr3d
⊢
R
Er
X
∧
A
R
B
∧
A
R
C
→
B
R
C
5
simpll
⊢
R
Er
X
∧
A
R
B
∧
B
R
C
→
R
Er
X
6
simplr
⊢
R
Er
X
∧
A
R
B
∧
B
R
C
→
A
R
B
7
simpr
⊢
R
Er
X
∧
A
R
B
∧
B
R
C
→
B
R
C
8
5
6
7
ertrd
⊢
R
Er
X
∧
A
R
B
∧
B
R
C
→
A
R
C
9
4
8
impbida
⊢
R
Er
X
∧
A
R
B
→
A
R
C
↔
B
R
C