Metamath Proof Explorer


Theorem erclwwlkrel

Description: .~ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 29-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r ˙=uw|uClWWalksGwClWWalksGn0wu=wcyclShiftn
Assertion erclwwlkrel Rel˙

Proof

Step Hyp Ref Expression
1 erclwwlk.r ˙=uw|uClWWalksGwClWWalksGn0wu=wcyclShiftn
2 1 relopabi Rel˙