Metamath Proof Explorer


Theorem ercnv

Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ercnv RErAR-1=R

Proof

Step Hyp Ref Expression
1 errel RErARelR
2 relcnv RelR-1
3 id RErARErA
4 3 ersymb RErAyRxxRy
5 vex xV
6 vex yV
7 5 6 brcnv xR-1yyRx
8 df-br xR-1yxyR-1
9 7 8 bitr3i yRxxyR-1
10 df-br xRyxyR
11 4 9 10 3bitr3g RErAxyR-1xyR
12 11 eqrelrdv2 RelR-1RelRRErAR-1=R
13 2 12 mpanl1 RelRRErAR-1=R
14 1 13 mpancom RErAR-1=R