Metamath Proof Explorer


Theorem erex

Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erex RErAAVRV

Proof

Step Hyp Ref Expression
1 erssxp RErARA×A
2 sqxpexg AVA×AV
3 ssexg RA×AA×AVRV
4 1 2 3 syl2an RErAAVRV
5 4 ex RErAAVRV