Metamath Proof Explorer


Theorem erexb

Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erexb RErARVAV

Proof

Step Hyp Ref Expression
1 dmexg RVdomRV
2 erdm RErAdomR=A
3 2 eleq1d RErAdomRVAV
4 1 3 imbitrid RErARVAV
5 erex RErAAVRV
6 4 5 impbid RErARVAV