Metamath Proof Explorer


Theorem erlecpbl

Description: Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses ercpbl.r φ˙ErV
ercpbl.v φVW
ercpbl.f F=xVx˙
erlecpbl.e φA˙CB˙DANBCND
Assertion erlecpbl φAVBVCVDVFA=FCFB=FDANBCND

Proof

Step Hyp Ref Expression
1 ercpbl.r φ˙ErV
2 ercpbl.v φVW
3 ercpbl.f F=xVx˙
4 erlecpbl.e φA˙CB˙DANBCND
5 1 3ad2ant1 φAVBVCVDV˙ErV
6 2 3ad2ant1 φAVBVCVDVVW
7 simp2l φAVBVCVDVAV
8 5 6 3 7 ercpbllem φAVBVCVDVFA=FCA˙C
9 simp2r φAVBVCVDVBV
10 5 6 3 9 ercpbllem φAVBVCVDVFB=FDB˙D
11 8 10 anbi12d φAVBVCVDVFA=FCFB=FDA˙CB˙D
12 4 3ad2ant1 φAVBVCVDVA˙CB˙DANBCND
13 11 12 sylbid φAVBVCVDVFA=FCFB=FDANBCND