Metamath Proof Explorer


Theorem qusaddvallem

Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses qusaddf.u φU=R/𝑠˙
qusaddf.v φV=BaseR
qusaddf.r φ˙ErV
qusaddf.z φRZ
qusaddf.e φa˙pb˙qa·˙b˙p·˙q
qusaddf.c φpVqVp·˙qV
qusaddflem.f F=xVx˙
qusaddflem.g φ˙=pVqVFpFqFp·˙q
Assertion qusaddvallem φXVYVX˙˙Y˙=X·˙Y˙

Proof

Step Hyp Ref Expression
1 qusaddf.u φU=R/𝑠˙
2 qusaddf.v φV=BaseR
3 qusaddf.r φ˙ErV
4 qusaddf.z φRZ
5 qusaddf.e φa˙pb˙qa·˙b˙p·˙q
6 qusaddf.c φpVqVp·˙qV
7 qusaddflem.f F=xVx˙
8 qusaddflem.g φ˙=pVqVFpFqFp·˙q
9 fvex BaseRV
10 2 9 eqeltrdi φVV
11 erex ˙ErVVV˙V
12 3 10 11 sylc φ˙V
13 1 2 7 12 4 quslem φF:VontoV/˙
14 3 10 7 6 5 ercpbl φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
15 13 14 8 imasaddvallem φXVYVFX˙FY=FX·˙Y
16 3 3ad2ant1 φXVYV˙ErV
17 10 3ad2ant1 φXVYVVV
18 16 17 7 divsfval φXVYVFX=X˙
19 16 17 7 divsfval φXVYVFY=Y˙
20 18 19 oveq12d φXVYVFX˙FY=X˙˙Y˙
21 16 17 7 divsfval φXVYVFX·˙Y=X·˙Y˙
22 15 20 21 3eqtr3d φXVYVX˙˙Y˙=X·˙Y˙