Metamath Proof Explorer


Theorem erngbase

Description: The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom W ). TODO: the .t hypothesis isn't used. (Also look at others.) (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses erngset.h H=LHypK
erngset.t T=LTrnKW
erngset.e E=TEndoKW
erngset.d D=EDRingKW
erng.c C=BaseD
Assertion erngbase KVWHC=E

Proof

Step Hyp Ref Expression
1 erngset.h H=LHypK
2 erngset.t T=LTrnKW
3 erngset.e E=TEndoKW
4 erngset.d D=EDRingKW
5 erng.c C=BaseD
6 1 2 3 4 erngset KVWHD=BasendxE+ndxsE,tEfTsftfndxsE,tEst
7 6 fveq2d KVWHBaseD=BaseBasendxE+ndxsE,tEfTsftfndxsE,tEst
8 3 fvexi EV
9 eqid BasendxE+ndxsE,tEfTsftfndxsE,tEst=BasendxE+ndxsE,tEfTsftfndxsE,tEst
10 9 rngbase EVE=BaseBasendxE+ndxsE,tEfTsftfndxsE,tEst
11 8 10 ax-mp E=BaseBasendxE+ndxsE,tEfTsftfndxsE,tEst
12 7 5 11 3eqtr4g KVWHC=E