Metamath Proof Explorer


Theorem estrreslem1OLD

Description: Obsolete version of estrreslem1 as of 28-Oct-2024. Lemma 1 for estrres . (Contributed by AV, 14-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses estrres.c φ C = Base ndx B Hom ndx H comp ndx · ˙
estrres.b φ B V
Assertion estrreslem1OLD φ B = Base C

Proof

Step Hyp Ref Expression
1 estrres.c φ C = Base ndx B Hom ndx H comp ndx · ˙
2 estrres.b φ B V
3 1 fveq2d φ Base C = Base Base ndx B Hom ndx H comp ndx · ˙
4 tpex Base ndx B Hom ndx H comp ndx · ˙ V
5 4 a1i φ Base ndx B Hom ndx H comp ndx · ˙ V
6 df-base Base = Slot 1
7 1nn 1
8 5 6 7 strndxid φ Base ndx B Hom ndx H comp ndx · ˙ Base ndx = Base Base ndx B Hom ndx H comp ndx · ˙
9 fvexd φ Base ndx V
10 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
11 3simpa Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx Base ndx Hom ndx Base ndx comp ndx
12 10 11 mp1i φ Base ndx Hom ndx Base ndx comp ndx
13 fvtp1g Base ndx V B V Base ndx Hom ndx Base ndx comp ndx Base ndx B Hom ndx H comp ndx · ˙ Base ndx = B
14 9 2 12 13 syl21anc φ Base ndx B Hom ndx H comp ndx · ˙ Base ndx = B
15 3 8 14 3eqtr2rd φ B = Base C