Metamath Proof Explorer


Theorem euabex

Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994)

Ref Expression
Assertion euabex ∃!xφx|φV

Proof

Step Hyp Ref Expression
1 eumo ∃!xφ*xφ
2 moabex *xφx|φV
3 1 2 syl ∃!xφx|φV