Metamath Proof Explorer


Theorem euan

Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 24-Dec-2018)

Ref Expression
Hypothesis moanim.1 xφ
Assertion euan ∃!xφψφ∃!xψ

Proof

Step Hyp Ref Expression
1 moanim.1 xφ
2 euex ∃!xφψxφψ
3 simpl φψφ
4 1 3 exlimi xφψφ
5 2 4 syl ∃!xφψφ
6 ibar φψφψ
7 1 6 eubid φ∃!xψ∃!xφψ
8 7 biimprcd ∃!xφψφ∃!xψ
9 5 8 jcai ∃!xφψφ∃!xψ
10 7 biimpa φ∃!xψ∃!xφψ
11 9 10 impbii ∃!xφψφ∃!xψ