Metamath Proof Explorer


Theorem eubii

Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994) (Revised by Mario Carneiro, 6-Oct-2016) Avoid ax-5 . (Revised by Wolf Lammen, 27-Sep-2023)

Ref Expression
Hypothesis eubii.1 φψ
Assertion eubii ∃!xφ∃!xψ

Proof

Step Hyp Ref Expression
1 eubii.1 φψ
2 1 exbii xφxψ
3 1 mobii *xφ*xψ
4 2 3 anbi12i xφ*xφxψ*xψ
5 df-eu ∃!xφxφ*xφ
6 df-eu ∃!xψxψ*xψ
7 4 5 6 3bitr4i ∃!xφ∃!xψ