Metamath Proof Explorer


Theorem eujustALT

Description: Alternate proof of eujust illustrating the use of dvelim . (Contributed by NM, 11-Mar-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eujustALT yxφx=yzxφx=z

Proof

Step Hyp Ref Expression
1 equequ2 y=zx=yx=z
2 1 bibi2d y=zφx=yφx=z
3 2 albidv y=zxφx=yxφx=z
4 3 sps yy=zxφx=yxφx=z
5 4 drex1 yy=zyxφx=yzxφx=z
6 hbnae ¬yy=zy¬yy=z
7 hbnae ¬yy=zz¬yy=z
8 6 7 alrimih ¬yy=zyz¬yy=z
9 ax-5 ¬xφx=wz¬xφx=w
10 equequ2 w=yx=wx=y
11 10 bibi2d w=yφx=wφx=y
12 11 albidv w=yxφx=wxφx=y
13 12 notbid w=y¬xφx=w¬xφx=y
14 9 13 dvelim ¬zz=y¬xφx=yz¬xφx=y
15 14 naecoms ¬yy=z¬xφx=yz¬xφx=y
16 ax-5 ¬xφx=wy¬xφx=w
17 equequ2 w=zx=wx=z
18 17 bibi2d w=zφx=wφx=z
19 18 albidv w=zxφx=wxφx=z
20 19 notbid w=z¬xφx=w¬xφx=z
21 16 20 dvelim ¬yy=z¬xφx=zy¬xφx=z
22 3 notbid y=z¬xφx=y¬xφx=z
23 22 a1i ¬yy=zy=z¬xφx=y¬xφx=z
24 15 21 23 cbv2h yz¬yy=zy¬xφx=yz¬xφx=z
25 8 24 syl ¬yy=zy¬xφx=yz¬xφx=z
26 25 notbid ¬yy=z¬y¬xφx=y¬z¬xφx=z
27 df-ex yxφx=y¬y¬xφx=y
28 df-ex zxφx=z¬z¬xφx=z
29 26 27 28 3bitr4g ¬yy=zyxφx=yzxφx=z
30 5 29 pm2.61i yxφx=yzxφx=z