Metamath Proof Explorer


Theorem eulerpath

Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypothesis eulerpathpr.v V=VtxG
Assertion eulerpath GUPGraphEulerPathsGxV|¬2VtxDegGx02

Proof

Step Hyp Ref Expression
1 eulerpathpr.v V=VtxG
2 releupth RelEulerPathsG
3 reldm0 RelEulerPathsGEulerPathsG=domEulerPathsG=
4 2 3 ax-mp EulerPathsG=domEulerPathsG=
5 4 necon3bii EulerPathsGdomEulerPathsG
6 n0 domEulerPathsGffdomEulerPathsG
7 5 6 bitri EulerPathsGffdomEulerPathsG
8 vex fV
9 8 eldm fdomEulerPathsGpfEulerPathsGp
10 1 eulerpathpr GUPGraphfEulerPathsGpxV|¬2VtxDegGx02
11 10 expcom fEulerPathsGpGUPGraphxV|¬2VtxDegGx02
12 11 exlimiv pfEulerPathsGpGUPGraphxV|¬2VtxDegGx02
13 9 12 sylbi fdomEulerPathsGGUPGraphxV|¬2VtxDegGx02
14 13 exlimiv ffdomEulerPathsGGUPGraphxV|¬2VtxDegGx02
15 7 14 sylbi EulerPathsGGUPGraphxV|¬2VtxDegGx02
16 15 impcom GUPGraphEulerPathsGxV|¬2VtxDegGx02