| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpathpr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
releupth |
|- Rel ( EulerPaths ` G ) |
| 3 |
|
reldm0 |
|- ( Rel ( EulerPaths ` G ) -> ( ( EulerPaths ` G ) = (/) <-> dom ( EulerPaths ` G ) = (/) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( EulerPaths ` G ) = (/) <-> dom ( EulerPaths ` G ) = (/) ) |
| 5 |
4
|
necon3bii |
|- ( ( EulerPaths ` G ) =/= (/) <-> dom ( EulerPaths ` G ) =/= (/) ) |
| 6 |
|
n0 |
|- ( dom ( EulerPaths ` G ) =/= (/) <-> E. f f e. dom ( EulerPaths ` G ) ) |
| 7 |
5 6
|
bitri |
|- ( ( EulerPaths ` G ) =/= (/) <-> E. f f e. dom ( EulerPaths ` G ) ) |
| 8 |
|
vex |
|- f e. _V |
| 9 |
8
|
eldm |
|- ( f e. dom ( EulerPaths ` G ) <-> E. p f ( EulerPaths ` G ) p ) |
| 10 |
1
|
eulerpathpr |
|- ( ( G e. UPGraph /\ f ( EulerPaths ` G ) p ) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) |
| 11 |
10
|
expcom |
|- ( f ( EulerPaths ` G ) p -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) |
| 12 |
11
|
exlimiv |
|- ( E. p f ( EulerPaths ` G ) p -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) |
| 13 |
9 12
|
sylbi |
|- ( f e. dom ( EulerPaths ` G ) -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) |
| 14 |
13
|
exlimiv |
|- ( E. f f e. dom ( EulerPaths ` G ) -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) |
| 15 |
7 14
|
sylbi |
|- ( ( EulerPaths ` G ) =/= (/) -> ( G e. UPGraph -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) ) |
| 16 |
15
|
impcom |
|- ( ( G e. UPGraph /\ ( EulerPaths ` G ) =/= (/) ) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) |