| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpathpr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 3 |  | simpl |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> G e. UPGraph ) | 
						
							| 4 |  | upgruhgr |  |-  ( G e. UPGraph -> G e. UHGraph ) | 
						
							| 5 | 2 | uhgrfun |  |-  ( G e. UHGraph -> Fun ( iEdg ` G ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( G e. UPGraph -> Fun ( iEdg ` G ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> Fun ( iEdg ` G ) ) | 
						
							| 8 |  | simpr |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> F ( EulerPaths ` G ) P ) | 
						
							| 9 | 1 2 3 7 8 | eupth2 |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) | 
						
							| 10 | 9 | 3adant3 |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ F ( Circuits ` G ) P ) -> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) | 
						
							| 11 |  | crctprop |  |-  ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) | 
						
							| 12 | 11 | simprd |  |-  ( F ( Circuits ` G ) P -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ F ( Circuits ` G ) P ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) | 
						
							| 14 | 13 | iftrued |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ F ( Circuits ` G ) P ) -> if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) = (/) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ F ( Circuits ` G ) P ) -> ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = (/) ) ) | 
						
							| 16 |  | rabeq0 |  |-  ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = (/) <-> A. x e. V -. -. 2 || ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 17 |  | notnotr |  |-  ( -. -. 2 || ( ( VtxDeg ` G ) ` x ) -> 2 || ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 18 | 17 | ralimi |  |-  ( A. x e. V -. -. 2 || ( ( VtxDeg ` G ) ` x ) -> A. x e. V 2 || ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 19 | 16 18 | sylbi |  |-  ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = (/) -> A. x e. V 2 || ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 20 | 15 19 | biimtrdi |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ F ( Circuits ` G ) P ) -> ( { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) -> A. x e. V 2 || ( ( VtxDeg ` G ) ` x ) ) ) | 
						
							| 21 | 10 20 | mpd |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ F ( Circuits ` G ) P ) -> A. x e. V 2 || ( ( VtxDeg ` G ) ` x ) ) |