| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpathpr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  𝐺  ∈  UPGraph ) | 
						
							| 4 |  | upgruhgr | ⊢ ( 𝐺  ∈  UPGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 5 | 2 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐺  ∈  UPGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | 
						
							| 9 | 1 2 3 7 8 | eupth2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  =  if ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ,  ∅ ,  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )  →  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  =  if ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ,  ∅ ,  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) | 
						
							| 11 |  | crctprop | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 12 | 11 | simprd | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 14 | 13 | iftrued | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )  →  if ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ,  ∅ ,  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } )  =  ∅ ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )  →  ( { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  =  if ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ,  ∅ ,  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } )  ↔  { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  =  ∅ ) ) | 
						
							| 16 |  | rabeq0 | ⊢ ( { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  =  ∅  ↔  ∀ 𝑥  ∈  𝑉 ¬  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 17 |  | notnotr | ⊢ ( ¬  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  →  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 18 | 17 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑉 ¬  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝑉 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 19 | 16 18 | sylbi | ⊢ ( { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  =  ∅  →  ∀ 𝑥  ∈  𝑉 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 20 | 15 19 | biimtrdi | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )  →  ( { 𝑥  ∈  𝑉  ∣  ¬  2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) }  =  if ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ,  ∅ ,  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } )  →  ∀ 𝑥  ∈  𝑉 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 21 | 10 20 | mpd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 )  →  ∀ 𝑥  ∈  𝑉 2  ∥  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) |