| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eucrctshift.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eucrctshift.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | eucrctshift.c | ⊢ ( 𝜑  →  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 |  | eucrctshift.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐹 ) | 
						
							| 5 |  | eucrctshift.s | ⊢ ( 𝜑  →  𝑆  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 6 |  | eucrctshift.h | ⊢ 𝐻  =  ( 𝐹  cyclShift  𝑆 ) | 
						
							| 7 |  | eucrctshift.q | ⊢ 𝑄  =  ( 𝑥  ∈  ( 0 ... 𝑁 )  ↦  if ( 𝑥  ≤  ( 𝑁  −  𝑆 ) ,  ( 𝑃 ‘ ( 𝑥  +  𝑆 ) ) ,  ( 𝑃 ‘ ( ( 𝑥  +  𝑆 )  −  𝑁 ) ) ) ) | 
						
							| 8 |  | eucrctshift.e | ⊢ ( 𝜑  →  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | 
						
							| 9 | 1 2 3 4 5 6 7 | crctcshtrl | ⊢ ( 𝜑  →  𝐻 ( Trails ‘ 𝐺 ) 𝑄 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐻 ( Trails ‘ 𝐺 ) 𝑄 )  →  𝐻 ( Trails ‘ 𝐺 ) 𝑄 ) | 
						
							| 11 | 2 | eupthf1o | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼 ) | 
						
							| 12 | 8 11 | syl | ⊢ ( 𝜑  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐻 ( Trails ‘ 𝐺 ) 𝑄 )  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼 ) | 
						
							| 14 |  | trliswlk | ⊢ ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄  →  𝐻 ( Walks ‘ 𝐺 ) 𝑄 ) | 
						
							| 15 | 2 | wlkf | ⊢ ( 𝐻 ( Walks ‘ 𝐺 ) 𝑄  →  𝐻  ∈  Word  dom  𝐼 ) | 
						
							| 16 |  | wrdf | ⊢ ( 𝐻  ∈  Word  dom  𝐼  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼 ) | 
						
							| 17 |  | df-f1o | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  ↔  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom  𝐼  ∧  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom  𝐼 ) ) | 
						
							| 18 |  | dffo3 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom  𝐼  ↔  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐼  ∧  ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑖  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 19 |  | crctiswlk | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 20 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐹  ∈  Word  dom  𝐼 ) | 
						
							| 21 |  | lencl | ⊢ ( 𝐹  ∈  Word  dom  𝐼  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 22 | 4 | oveq2i | ⊢ ( 0 ..^ 𝑁 )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | 
						
							| 23 | 22 | eleq2i | ⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  ↔  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 24 |  | elfzonn0 | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑆  ∈  ℕ0 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑆  ∈  ℕ0 ) | 
						
							| 26 |  | elfzonn0 | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 27 |  | nn0sub | ⊢ ( ( 𝑆  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑆  ≤  𝑦  ↔  ( 𝑦  −  𝑆 )  ∈  ℕ0 ) ) | 
						
							| 28 | 25 26 27 | syl2an | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑆  ≤  𝑦  ↔  ( 𝑦  −  𝑆 )  ∈  ℕ0 ) ) | 
						
							| 29 | 28 | biimpac | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  −  𝑆 )  ∈  ℕ0 ) | 
						
							| 30 |  | elfzo0 | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 31 |  | simp2 | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 32 | 30 31 | sylbi | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 33 | 32 | ad2antll | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 34 |  | nn0re | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℝ ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 36 |  | nnre | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 39 |  | elfzoelz | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑆  ∈  ℤ ) | 
						
							| 40 | 39 | zred | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑆  ∈  ℝ ) | 
						
							| 41 |  | readdcl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( ( ♯ ‘ 𝐹 )  +  𝑆 )  ∈  ℝ ) | 
						
							| 42 | 37 40 41 | syl2an | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ 𝐹 )  +  𝑆 )  ∈  ℝ ) | 
						
							| 43 | 35 38 42 | 3jca | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  ∈  ℝ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℝ  ∧  ( ( ♯ ‘ 𝐹 )  +  𝑆 )  ∈  ℝ ) ) | 
						
							| 44 |  | elfzole1 | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  0  ≤  𝑆 ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  0  ≤  𝑆 ) | 
						
							| 46 |  | addge01 | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( 0  ≤  𝑆  ↔  ( ♯ ‘ 𝐹 )  ≤  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) | 
						
							| 47 | 37 40 46 | syl2an | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 0  ≤  𝑆  ↔  ( ♯ ‘ 𝐹 )  ≤  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) | 
						
							| 48 | 45 47 | mpbid | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ≤  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) | 
						
							| 49 | 43 48 | lelttrdi | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  <  ( ♯ ‘ 𝐹 )  →  𝑦  <  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) | 
						
							| 50 | 49 | ex | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑦  <  ( ♯ ‘ 𝐹 )  →  𝑦  <  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) ) | 
						
							| 51 | 50 | com23 | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( 𝑦  <  ( ♯ ‘ 𝐹 )  →  ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  <  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) ) | 
						
							| 52 | 51 | 3impia | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  <  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) | 
						
							| 53 | 52 | adantld | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑦  <  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) | 
						
							| 54 | 53 | imp | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  𝑦  <  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) | 
						
							| 55 | 34 | 3ad2ant1 | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 57 | 40 | ad2antll | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  𝑆  ∈  ℝ ) | 
						
							| 58 |  | elfzoel2 | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 59 | 58 | zred | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 60 | 59 | ad2antll | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 61 | 56 57 60 | ltsubaddd | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑦  −  𝑆 )  <  ( ♯ ‘ 𝐹 )  ↔  𝑦  <  ( ( ♯ ‘ 𝐹 )  +  𝑆 ) ) ) | 
						
							| 62 | 54 61 | mpbird | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  −  𝑆 )  <  ( ♯ ‘ 𝐹 ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  −  𝑆 )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 64 | 30 63 | sylbi | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  −  𝑆 )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 65 | 64 | impcom | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  −  𝑆 )  <  ( ♯ ‘ 𝐹 ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  −  𝑆 )  <  ( ♯ ‘ 𝐹 ) ) | 
						
							| 67 |  | elfzo0 | ⊢ ( ( 𝑦  −  𝑆 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( ( 𝑦  −  𝑆 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( 𝑦  −  𝑆 )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 68 | 29 33 66 67 | syl3anbrc | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  −  𝑆 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 69 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝑦  −  𝑆 )  →  ( 𝑧  +  𝑆 )  =  ( ( 𝑦  −  𝑆 )  +  𝑆 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑧  =  ( 𝑦  −  𝑆 )  →  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( ( 𝑦  −  𝑆 )  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 71 | 39 | zcnd | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑆  ∈  ℂ ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑆  ∈  ℂ ) | 
						
							| 73 |  | elfzoelz | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 74 | 73 | zcnd | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 75 | 72 74 | anim12ci | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  ∈  ℂ  ∧  𝑆  ∈  ℂ ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  ∈  ℂ  ∧  𝑆  ∈  ℂ ) ) | 
						
							| 77 |  | npcan | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑆  ∈  ℂ )  →  ( ( 𝑦  −  𝑆 )  +  𝑆 )  =  𝑦 ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑦  −  𝑆 )  +  𝑆 )  =  𝑦 ) | 
						
							| 79 | 78 | oveq1d | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑦  −  𝑆 )  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( 𝑦  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 80 |  | zmodidfzoimp | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑦  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 81 | 80 | ad2antll | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 82 | 79 81 | eqtrd | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑦  −  𝑆 )  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 83 | 70 82 | sylan9eqr | ⊢ ( ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  ∧  𝑧  =  ( 𝑦  −  𝑆 ) )  →  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 84 | 83 | eqcomd | ⊢ ( ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  ∧  𝑧  =  ( 𝑦  −  𝑆 ) )  →  𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 85 | 68 84 | rspcedeq2vd | ⊢ ( ( 𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 86 |  | elfzo0 | ⊢ ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 87 |  | nn0cn | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℂ ) | 
						
							| 88 | 87 | ad2antrr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 89 |  | nn0cn | ⊢ ( 𝑆  ∈  ℕ0  →  𝑆  ∈  ℂ ) | 
						
							| 90 | 89 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) )  →  𝑆  ∈  ℂ ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  𝑆  ∈  ℂ ) | 
						
							| 92 |  | nncn | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 93 | 92 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 95 | 88 91 94 | subadd23d | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  =  ( 𝑦  +  ( ( ♯ ‘ 𝐹 )  −  𝑆 ) ) ) | 
						
							| 96 |  | simpll | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 97 |  | nn0z | ⊢ ( 𝑆  ∈  ℕ0  →  𝑆  ∈  ℤ ) | 
						
							| 98 |  | nnz | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 99 |  | znnsub | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℤ )  →  ( 𝑆  <  ( ♯ ‘ 𝐹 )  ↔  ( ( ♯ ‘ 𝐹 )  −  𝑆 )  ∈  ℕ ) ) | 
						
							| 100 | 97 98 99 | syl2an | ⊢ ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( 𝑆  <  ( ♯ ‘ 𝐹 )  ↔  ( ( ♯ ‘ 𝐹 )  −  𝑆 )  ∈  ℕ ) ) | 
						
							| 101 | 100 | biimp3a | ⊢ ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) )  →  ( ( ♯ ‘ 𝐹 )  −  𝑆 )  ∈  ℕ ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ 𝐹 )  −  𝑆 )  ∈  ℕ ) | 
						
							| 103 | 102 | nnnn0d | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ 𝐹 )  −  𝑆 )  ∈  ℕ0 ) | 
						
							| 104 | 96 103 | nn0addcld | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  +  ( ( ♯ ‘ 𝐹 )  −  𝑆 ) )  ∈  ℕ0 ) | 
						
							| 105 | 95 104 | eqeltrd | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0 ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0 ) | 
						
							| 107 |  | simplr2 | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 108 | 87 | adantr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 109 |  | subcl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑆  ∈  ℂ )  →  ( 𝑦  −  𝑆 )  ∈  ℂ ) | 
						
							| 110 | 108 90 109 | syl2an | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  −  𝑆 )  ∈  ℂ ) | 
						
							| 111 | 94 110 | jca | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℂ  ∧  ( 𝑦  −  𝑆 )  ∈  ℂ ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℂ  ∧  ( 𝑦  −  𝑆 )  ∈  ℂ ) ) | 
						
							| 113 |  | addcom | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℂ  ∧  ( 𝑦  −  𝑆 )  ∈  ℂ )  →  ( ( ♯ ‘ 𝐹 )  +  ( 𝑦  −  𝑆 ) )  =  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 114 | 112 113 | syl | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( ♯ ‘ 𝐹 )  +  ( 𝑦  −  𝑆 ) )  =  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 115 | 34 | adantr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 116 |  | nn0re | ⊢ ( 𝑆  ∈  ℕ0  →  𝑆  ∈  ℝ ) | 
						
							| 117 | 116 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) )  →  𝑆  ∈  ℝ ) | 
						
							| 118 |  | ltnle | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( 𝑦  <  𝑆  ↔  ¬  𝑆  ≤  𝑦 ) ) | 
						
							| 119 |  | simpl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 120 |  | simpr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  𝑆  ∈  ℝ ) | 
						
							| 121 | 119 120 | sublt0d | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( ( 𝑦  −  𝑆 )  <  0  ↔  𝑦  <  𝑆 ) ) | 
						
							| 122 | 121 | biimprd | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( 𝑦  <  𝑆  →  ( 𝑦  −  𝑆 )  <  0 ) ) | 
						
							| 123 | 118 122 | sylbird | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( ¬  𝑆  ≤  𝑦  →  ( 𝑦  −  𝑆 )  <  0 ) ) | 
						
							| 124 | 115 117 123 | syl2an | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ¬  𝑆  ≤  𝑦  →  ( 𝑦  −  𝑆 )  <  0 ) ) | 
						
							| 125 | 124 | imp | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( 𝑦  −  𝑆 )  <  0 ) | 
						
							| 126 |  | resubcl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( 𝑦  −  𝑆 )  ∈  ℝ ) | 
						
							| 127 | 115 117 126 | syl2an | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑦  −  𝑆 )  ∈  ℝ ) | 
						
							| 128 | 36 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 130 | 127 129 | jca | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑦  −  𝑆 )  ∈  ℝ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℝ ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( 𝑦  −  𝑆 )  ∈  ℝ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℝ ) ) | 
						
							| 132 |  | ltaddneg | ⊢ ( ( ( 𝑦  −  𝑆 )  ∈  ℝ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℝ )  →  ( ( 𝑦  −  𝑆 )  <  0  ↔  ( ( ♯ ‘ 𝐹 )  +  ( 𝑦  −  𝑆 ) )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 133 | 131 132 | syl | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( 𝑦  −  𝑆 )  <  0  ↔  ( ( ♯ ‘ 𝐹 )  +  ( 𝑦  −  𝑆 ) )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 134 | 125 133 | mpbid | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( ♯ ‘ 𝐹 )  +  ( 𝑦  −  𝑆 ) )  <  ( ♯ ‘ 𝐹 ) ) | 
						
							| 135 | 114 134 | eqbrtrrd | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) | 
						
							| 136 | 106 107 135 | 3jca | ⊢ ( ( ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  ∧  ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  𝑆  ≤  𝑦 )  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 137 | 136 | exp31 | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) )  →  ( ¬  𝑆  ≤  𝑦  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 138 | 137 | 3adant2 | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑆  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑆  <  ( ♯ ‘ 𝐹 ) )  →  ( ¬  𝑆  ≤  𝑦  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 139 | 86 138 | biimtrid | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ¬  𝑆  ≤  𝑦  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 140 | 139 | adantld | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ¬  𝑆  ≤  𝑦  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 141 | 30 140 | sylbi | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ¬  𝑆  ≤  𝑦  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 142 | 141 | impcom | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ¬  𝑆  ≤  𝑦  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 143 | 142 | impcom | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 144 |  | elfzo0 | ⊢ ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 145 | 143 144 | sylibr | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 146 |  | oveq1 | ⊢ ( 𝑧  =  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  →  ( 𝑧  +  𝑆 )  =  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  +  𝑆 ) ) | 
						
							| 147 | 146 | oveq1d | ⊢ ( 𝑧  =  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 148 | 72 | adantr | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑆  ∈  ℂ ) | 
						
							| 149 | 74 | adantl | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 150 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 151 | 150 | ad2antrr | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 152 | 148 149 151 | 3jca | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑆  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℂ ) ) | 
						
							| 153 | 152 | adantl | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑆  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℂ ) ) | 
						
							| 154 |  | simp2 | ⊢ ( ( 𝑆  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℂ )  →  𝑦  ∈  ℂ ) | 
						
							| 155 |  | simp3 | ⊢ ( ( 𝑆  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℂ )  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 156 |  | simp1 | ⊢ ( ( 𝑆  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℂ )  →  𝑆  ∈  ℂ ) | 
						
							| 157 | 154 156 155 | nppcand | ⊢ ( ( 𝑆  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℂ )  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  +  𝑆 )  =  ( 𝑦  +  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 158 | 154 155 157 | comraddd | ⊢ ( ( 𝑆  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℂ )  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  +  𝑆 )  =  ( ( ♯ ‘ 𝐹 )  +  𝑦 ) ) | 
						
							| 159 | 153 158 | syl | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  +  𝑆 )  =  ( ( ♯ ‘ 𝐹 )  +  𝑦 ) ) | 
						
							| 160 | 159 | oveq1d | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( ( ♯ ‘ 𝐹 )  +  𝑦 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 161 | 30 | biimpi | ⊢ ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 162 | 161 | ad2antll | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 163 |  | addmodid | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑦  <  ( ♯ ‘ 𝐹 ) )  →  ( ( ( ♯ ‘ 𝐹 )  +  𝑦 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 164 | 162 163 | syl | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( ♯ ‘ 𝐹 )  +  𝑦 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 165 | 160 164 | eqtrd | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) )  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 166 | 147 165 | sylan9eqr | ⊢ ( ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  ∧  𝑧  =  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) | 
						
							| 167 | 166 | eqcomd | ⊢ ( ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  ∧  𝑧  =  ( ( 𝑦  −  𝑆 )  +  ( ♯ ‘ 𝐹 ) ) )  →  𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 168 | 145 167 | rspcedeq2vd | ⊢ ( ( ¬  𝑆  ≤  𝑦  ∧  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 169 | 85 168 | pm2.61ian | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 170 | 22 | rexeqi | ⊢ ( ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 171 | 169 170 | sylibr | ⊢ ( ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 172 | 171 | exp31 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑆  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 173 | 23 172 | biimtrid | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 174 | 19 20 21 173 | 4syl | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃  →  ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 175 | 3 5 174 | sylc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  →  ( 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 177 | 176 | imp | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 178 | 177 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 179 |  | fveq2 | ⊢ ( 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 180 | 179 | reximi | ⊢ ( ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 181 | 178 180 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 182 | 3 19 20 | 3syl | ⊢ ( 𝜑  →  𝐹  ∈  Word  dom  𝐼 ) | 
						
							| 183 | 182 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐹  ∈  Word  dom  𝐼 ) | 
						
							| 184 |  | elfzoelz | ⊢ ( 𝑆  ∈  ( 0 ..^ 𝑁 )  →  𝑆  ∈  ℤ ) | 
						
							| 185 | 5 184 | syl | ⊢ ( 𝜑  →  𝑆  ∈  ℤ ) | 
						
							| 186 | 185 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑆  ∈  ℤ ) | 
						
							| 187 | 22 | eleq2i | ⊢ ( 𝑧  ∈  ( 0 ..^ 𝑁 )  ↔  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 188 | 187 | biimpi | ⊢ ( 𝑧  ∈  ( 0 ..^ 𝑁 )  →  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 189 |  | cshwidxmod | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑆  ∈  ℤ  ∧  𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 )  =  ( 𝐹 ‘ ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 190 | 183 186 188 189 | syl2an3an | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑧  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 )  =  ( 𝐹 ‘ ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 191 | 190 | eqeq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑧  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 192 | 191 | rexbidva | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ( ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 )  ↔  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑧  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 193 | 181 192 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 ) ) | 
						
							| 194 | 1 2 3 4 5 6 | crctcshlem2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  𝑁 ) | 
						
							| 195 | 194 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝐻 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 196 | 195 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 0 ..^ ( ♯ ‘ 𝐻 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 197 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑖  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 198 | 6 | fveq1i | ⊢ ( 𝐻 ‘ 𝑧 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 ) | 
						
							| 199 | 198 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝐻 ‘ 𝑧 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 ) ) | 
						
							| 200 | 197 199 | eqeq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑖  =  ( 𝐻 ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 ) ) ) | 
						
							| 201 | 196 200 | rexeqbidv | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ( ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) 𝑖  =  ( 𝐻 ‘ 𝑧 )  ↔  ∃ 𝑧  ∈  ( 0 ..^ 𝑁 ) ( 𝐹 ‘ 𝑦 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑧 ) ) ) | 
						
							| 202 | 193 201 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  ∧  𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  =  ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) 𝑖  =  ( 𝐻 ‘ 𝑧 ) ) | 
						
							| 203 | 202 | rexlimdva2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  dom  𝐼 )  →  ( ∃ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑖  =  ( 𝐹 ‘ 𝑦 )  →  ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) 𝑖  =  ( 𝐻 ‘ 𝑧 ) ) ) | 
						
							| 204 | 203 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑖  =  ( 𝐹 ‘ 𝑦 )  →  ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) 𝑖  =  ( 𝐻 ‘ 𝑧 ) ) ) | 
						
							| 205 | 204 | impcom | ⊢ ( ( ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑖  =  ( 𝐹 ‘ 𝑦 )  ∧  𝜑 )  →  ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) 𝑖  =  ( 𝐻 ‘ 𝑧 ) ) | 
						
							| 206 | 205 | anim1ci | ⊢ ( ( ( ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑖  =  ( 𝐹 ‘ 𝑦 )  ∧  𝜑 )  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼 )  →  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼  ∧  ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) 𝑖  =  ( 𝐻 ‘ 𝑧 ) ) ) | 
						
							| 207 |  | dffo3 | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼  ↔  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼  ∧  ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑧  ∈  ( 0 ..^ ( ♯ ‘ 𝐻 ) ) 𝑖  =  ( 𝐻 ‘ 𝑧 ) ) ) | 
						
							| 208 | 206 207 | sylibr | ⊢ ( ( ( ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑖  =  ( 𝐹 ‘ 𝑦 )  ∧  𝜑 )  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼 )  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) | 
						
							| 209 | 208 | exp31 | ⊢ ( ∀ 𝑖  ∈  dom  𝐼 ∃ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 𝑖  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝜑  →  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) ) | 
						
							| 210 | 18 209 | simplbiim | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom  𝐼  →  ( 𝜑  →  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) ) | 
						
							| 211 | 17 210 | simplbiim | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  →  ( 𝜑  →  ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) ) | 
						
							| 212 | 211 | com13 | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom  𝐼  →  ( 𝜑  →  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) ) | 
						
							| 213 | 14 15 16 212 | 4syl | ⊢ ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄  →  ( 𝜑  →  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) ) | 
						
							| 214 | 213 | impcom | ⊢ ( ( 𝜑  ∧  𝐻 ( Trails ‘ 𝐺 ) 𝑄 )  →  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) | 
						
							| 215 | 13 214 | mpd | ⊢ ( ( 𝜑  ∧  𝐻 ( Trails ‘ 𝐺 ) 𝑄 )  →  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) | 
						
							| 216 | 10 215 | jca | ⊢ ( ( 𝜑  ∧  𝐻 ( Trails ‘ 𝐺 ) 𝑄 )  →  ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) | 
						
							| 217 | 9 216 | mpdan | ⊢ ( 𝜑  →  ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) | 
						
							| 218 | 2 | iseupth | ⊢ ( 𝐻 ( EulerPaths ‘ 𝐺 ) 𝑄  ↔  ( 𝐻 ( Trails ‘ 𝐺 ) 𝑄  ∧  𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) –onto→ dom  𝐼 ) ) | 
						
							| 219 | 217 218 | sylibr | ⊢ ( 𝜑  →  𝐻 ( EulerPaths ‘ 𝐺 ) 𝑄 ) | 
						
							| 220 | 1 2 3 4 5 6 7 | crctcsh | ⊢ ( 𝜑  →  𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) | 
						
							| 221 | 219 220 | jca | ⊢ ( 𝜑  →  ( 𝐻 ( EulerPaths ‘ 𝐺 ) 𝑄  ∧  𝐻 ( Circuits ‘ 𝐺 ) 𝑄 ) ) |