Description: Adding a negative number to another number decreases it. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | ltadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < ( 𝐵 + 0 ) ) ) | |
| 3 | 1 2 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < ( 𝐵 + 0 ) ) ) |
| 4 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 5 | 4 | addridd | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 0 ) = 𝐵 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 + 0 ) = 𝐵 ) |
| 7 | 6 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 + 𝐴 ) < ( 𝐵 + 0 ) ↔ ( 𝐵 + 𝐴 ) < 𝐵 ) ) |
| 8 | 3 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < 𝐵 ) ) |