Metamath Proof Explorer


Theorem ltaddneg

Description: Adding a negative number to another number decreases it. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ltaddneg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 ltadd2 ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < ( 𝐵 + 0 ) ) )
3 1 2 mp3an2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < ( 𝐵 + 0 ) ) )
4 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
5 4 addid1d ( 𝐵 ∈ ℝ → ( 𝐵 + 0 ) = 𝐵 )
6 5 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 + 0 ) = 𝐵 )
7 6 breq2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 + 𝐴 ) < ( 𝐵 + 0 ) ↔ ( 𝐵 + 𝐴 ) < 𝐵 ) )
8 3 7 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ ( 𝐵 + 𝐴 ) < 𝐵 ) )