| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
ltadd2 |
|- ( ( A e. RR /\ 0 e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < ( B + 0 ) ) ) |
| 3 |
1 2
|
mp3an2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < ( B + 0 ) ) ) |
| 4 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 5 |
4
|
addridd |
|- ( B e. RR -> ( B + 0 ) = B ) |
| 6 |
5
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( B + 0 ) = B ) |
| 7 |
6
|
breq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) < ( B + 0 ) <-> ( B + A ) < B ) ) |
| 8 |
3 7
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < B ) ) |