Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
ltadd2 |
|- ( ( A e. RR /\ 0 e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < ( B + 0 ) ) ) |
3 |
1 2
|
mp3an2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < ( B + 0 ) ) ) |
4 |
|
recn |
|- ( B e. RR -> B e. CC ) |
5 |
4
|
addid1d |
|- ( B e. RR -> ( B + 0 ) = B ) |
6 |
5
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( B + 0 ) = B ) |
7 |
6
|
breq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) < ( B + 0 ) <-> ( B + A ) < B ) ) |
8 |
3 7
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < B ) ) |