Metamath Proof Explorer


Theorem euop2

Description: Transfer existential uniqueness to second member of an ordered pair. (Contributed by NM, 10-Apr-2004)

Ref Expression
Hypothesis euop2.1 AV
Assertion euop2 ∃!xyx=Ayφ∃!yφ

Proof

Step Hyp Ref Expression
1 euop2.1 AV
2 opex AyV
3 1 moop2 *yx=Ay
4 2 3 euxfr2w ∃!xyx=Ayφ∃!yφ