Metamath Proof Explorer


Theorem euotd

Description: Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015)

Ref Expression
Hypotheses euotd.1 φ A U
euotd.2 φ B V
euotd.3 φ C W
euotd.4 φ ψ a = A b = B c = C
Assertion euotd φ ∃! x a b c x = a b c ψ

Proof

Step Hyp Ref Expression
1 euotd.1 φ A U
2 euotd.2 φ B V
3 euotd.3 φ C W
4 euotd.4 φ ψ a = A b = B c = C
5 4 biimpa φ ψ a = A b = B c = C
6 vex a V
7 vex b V
8 vex c V
9 6 7 8 otth a b c = A B C a = A b = B c = C
10 5 9 sylibr φ ψ a b c = A B C
11 10 eqeq2d φ ψ x = a b c x = A B C
12 11 biimpd φ ψ x = a b c x = A B C
13 12 impancom φ x = a b c ψ x = A B C
14 13 expimpd φ x = a b c ψ x = A B C
15 14 exlimdv φ c x = a b c ψ x = A B C
16 15 exlimdvv φ a b c x = a b c ψ x = A B C
17 tru
18 2 adantr φ a = A B V
19 3 ad2antrr φ a = A b = B C W
20 simpr φ a = A b = B c = C a = A b = B c = C
21 20 9 sylibr φ a = A b = B c = C a b c = A B C
22 21 eqcomd φ a = A b = B c = C A B C = a b c
23 4 biimpar φ a = A b = B c = C ψ
24 22 23 jca φ a = A b = B c = C A B C = a b c ψ
25 trud φ a = A b = B c = C
26 24 25 2thd φ a = A b = B c = C A B C = a b c ψ
27 26 3anassrs φ a = A b = B c = C A B C = a b c ψ
28 19 27 sbcied φ a = A b = B [˙C / c]˙ A B C = a b c ψ
29 18 28 sbcied φ a = A [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
30 1 29 sbcied φ [˙A / a]˙ [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
31 17 30 mpbiri φ [˙A / a]˙ [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
32 31 spesbcd φ a [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
33 nfcv _ b B
34 nfsbc1v b [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
35 34 nfex b a [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
36 sbceq1a b = B [˙C / c]˙ A B C = a b c ψ [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
37 36 exbidv b = B a [˙C / c]˙ A B C = a b c ψ a [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ
38 33 35 37 spcegf B V a [˙B / b]˙ [˙C / c]˙ A B C = a b c ψ b a [˙C / c]˙ A B C = a b c ψ
39 2 32 38 sylc φ b a [˙C / c]˙ A B C = a b c ψ
40 nfcv _ c C
41 nfsbc1v c [˙C / c]˙ A B C = a b c ψ
42 41 nfex c a [˙C / c]˙ A B C = a b c ψ
43 42 nfex c b a [˙C / c]˙ A B C = a b c ψ
44 sbceq1a c = C A B C = a b c ψ [˙C / c]˙ A B C = a b c ψ
45 44 2exbidv c = C b a A B C = a b c ψ b a [˙C / c]˙ A B C = a b c ψ
46 40 43 45 spcegf C W b a [˙C / c]˙ A B C = a b c ψ c b a A B C = a b c ψ
47 3 39 46 sylc φ c b a A B C = a b c ψ
48 excom13 c b a A B C = a b c ψ a b c A B C = a b c ψ
49 47 48 sylib φ a b c A B C = a b c ψ
50 eqeq1 x = A B C x = a b c A B C = a b c
51 50 anbi1d x = A B C x = a b c ψ A B C = a b c ψ
52 51 3exbidv x = A B C a b c x = a b c ψ a b c A B C = a b c ψ
53 49 52 syl5ibrcom φ x = A B C a b c x = a b c ψ
54 16 53 impbid φ a b c x = a b c ψ x = A B C
55 54 alrimiv φ x a b c x = a b c ψ x = A B C
56 otex A B C V
57 eqeq2 y = A B C x = y x = A B C
58 57 bibi2d y = A B C a b c x = a b c ψ x = y a b c x = a b c ψ x = A B C
59 58 albidv y = A B C x a b c x = a b c ψ x = y x a b c x = a b c ψ x = A B C
60 56 59 spcev x a b c x = a b c ψ x = A B C y x a b c x = a b c ψ x = y
61 55 60 syl φ y x a b c x = a b c ψ x = y
62 eu6 ∃! x a b c x = a b c ψ y x a b c x = a b c ψ x = y
63 61 62 sylibr φ ∃! x a b c x = a b c ψ