Metamath Proof Explorer


Theorem eupth2lem1

Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)

Ref Expression
Assertion eupth2lem1 UVUifA=BABABU=AU=B

Proof

Step Hyp Ref Expression
1 eleq2 =ifA=BABUUifA=BAB
2 1 bibi1d =ifA=BABUABU=AU=BUifA=BABABU=AU=B
3 eleq2 AB=ifA=BABUABUifA=BAB
4 3 bibi1d AB=ifA=BABUABABU=AU=BUifA=BABABU=AU=B
5 noel ¬U
6 5 a1i UVA=B¬U
7 simpl ABU=AU=BAB
8 7 neneqd ABU=AU=B¬A=B
9 simpr UVA=BA=B
10 8 9 nsyl3 UVA=B¬ABU=AU=B
11 6 10 2falsed UVA=BUABU=AU=B
12 elprg UVUABU=AU=B
13 df-ne AB¬A=B
14 ibar ABU=AU=BABU=AU=B
15 13 14 sylbir ¬A=BU=AU=BABU=AU=B
16 12 15 sylan9bb UV¬A=BUABABU=AU=B
17 2 4 11 16 ifbothda UVUifA=BABABU=AU=B