Metamath Proof Explorer


Theorem eupthfi

Description: Any graph with an Eulerian path is of finite size, i.e. with a finite number of edges. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Hypothesis eupths.i I=iEdgG
Assertion eupthfi FEulerPathsGPdomIFin

Proof

Step Hyp Ref Expression
1 eupths.i I=iEdgG
2 fzofi 0..^FFin
3 1 eupthf1o FEulerPathsGPF:0..^F1-1 ontodomI
4 ovex 0..^FV
5 4 f1oen F:0..^F1-1 ontodomI0..^FdomI
6 ensym 0..^FdomIdomI0..^F
7 3 5 6 3syl FEulerPathsGPdomI0..^F
8 enfii 0..^FFindomI0..^FdomIFin
9 2 7 8 sylancr FEulerPathsGPdomIFin