| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupths.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
fzofi |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ Fin |
| 3 |
1
|
eupthf1o |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) |
| 4 |
|
ovex |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V |
| 5 |
4
|
f1oen |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ≈ dom 𝐼 ) |
| 6 |
|
ensym |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ≈ dom 𝐼 → dom 𝐼 ≈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 7 |
3 5 6
|
3syl |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → dom 𝐼 ≈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 8 |
|
enfii |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ Fin ∧ dom 𝐼 ≈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom 𝐼 ∈ Fin ) |
| 9 |
2 7 8
|
sylancr |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → dom 𝐼 ∈ Fin ) |