| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupths.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 | 1 | eupthi | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼 ) ) | 
						
							| 3 | 2 | simpld | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 | 1 | wlkvtxeledg | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 6 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑃 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 7 | 5 6 | preq12d | ⊢ ( 𝑘  =  𝑁  →  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) | 
						
							| 8 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑁  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 9 | 7 8 | sseq12d | ⊢ ( 𝑘  =  𝑁  →  ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  ↔  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 10 | 9 | rspccv | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 11 | 3 4 10 | 3syl | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |