| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupths.i |
|- I = ( iEdg ` G ) |
| 2 |
|
fzofi |
|- ( 0 ..^ ( # ` F ) ) e. Fin |
| 3 |
1
|
eupthf1o |
|- ( F ( EulerPaths ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
| 4 |
|
ovex |
|- ( 0 ..^ ( # ` F ) ) e. _V |
| 5 |
4
|
f1oen |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> ( 0 ..^ ( # ` F ) ) ~~ dom I ) |
| 6 |
|
ensym |
|- ( ( 0 ..^ ( # ` F ) ) ~~ dom I -> dom I ~~ ( 0 ..^ ( # ` F ) ) ) |
| 7 |
3 5 6
|
3syl |
|- ( F ( EulerPaths ` G ) P -> dom I ~~ ( 0 ..^ ( # ` F ) ) ) |
| 8 |
|
enfii |
|- ( ( ( 0 ..^ ( # ` F ) ) e. Fin /\ dom I ~~ ( 0 ..^ ( # ` F ) ) ) -> dom I e. Fin ) |
| 9 |
2 7 8
|
sylancr |
|- ( F ( EulerPaths ` G ) P -> dom I e. Fin ) |